(¥»¥å·¥ç¥óɽ¤Ø)

¥ޥë¥á¥ǥ£¥¢¡¤ʬ»¶¡¤¶¨Ĵ¤ȥâ¥Х¤¥ë(DICOMO2012)¥·¥ó¥ݥ¸¥¦¥à

¥»¥å·¥ç¥ó 7F  ¥»¥­¥å¥ê¥ƥ£2
Æü»þ: 2012ǯ7·î6Æü(¶â) 8:30 - 10:35
Éô²°: ¹õɴ¹ç¤Î2
ºÂĹ: ¶ðÌî ͺ°ì (Åì¼Ç)

7F-1 (»þ´Ö: 8:30 - 8:55)
Âê̾ 45nm ¥ץ¥¹ FPGA ¾å¤Î Physical Unclonable Function ¤ÎÆÃɾ²Á
Ãø¼Ô *ËÙ ÍÎʿ, ÊҲ¼ Éҹ¨, ժ ¸¼¹À, º´ƣ ¾Ú (»º¶ȵ»½ÑÁí¹縦µæ½ê ¾ðÊ󥻥­¥å¥ê¥ƥ£¸¦µ楻¥󥿡¼)
Page pp. 1928 - 1933
Keyword PUF, SASEBO, FPGA
Abstract 45nm ¥ץ¥¹¤Ç¤¤µ¤줿Spartan-6 FPGA¾å¤ÎPhysical Unclonable Function (PUF) ¤ÎÆÃɾ²ò¹Ԥä¿¡¥PUF¤ÏȾƳÂΥץ¥¹¤ΤФé¤Ĥ­¤òÍøÍѤ·¤ƥǥХ¤¥¹¸Çͭ¤ÎID¤ò¤¹¤ë²óϩ¤Ǥ¢¤ꡤʣ¤¬¶ˤá¤ƺ¤Æñ¤Ǥ¢¤뤿¤ᡤÌÏÊïȾƳÂÎÉʤ¬Áý²ä¹¤ë»Ծì¤ˤª¤¤¤ƿ¿´æȽÄê¤˱þÍѤǤ­¤ë¤ȴüÂԤµ¤ì¤Ƥ¤¤롥¥ץ¥¹¤ÎÈùºٲ½¤Ëȼ¤¤¤Фé¤Ĥ­¤òÍޤ¨¤褦¤Ȥ¹¤븦µ椬¤ó¤˹Ԥï¤ì¤Ƥ¤¤ëÃ桤Àèü¥ץ¥¹¤ˤª¤±¤ëPUF¤Îͭ¸ú¤򸡾ڤ¹¤뤳¤Ȥ¬½ÅÍפǤ¢¤롥Ëܸ¦µæ¤Ǥϡ¤SASEBO-W¤òÍѤ¤¤Æ20¸ĤÎSpartan-6¾å¤Ë64 ÃʤÎArbiter PUF¤ò¼ÂÁ¤¥ǥХ¤¥¹Æâ¤νÐÎϤκƸ½¤ä¥ǥХ¤¥¹´֤νÐÎϤΥæ¥ˡ¼¥¯Åù¤òɾ²·¤¿¡¥¥åׯâ¤ˤª¤±¤ëºƸ½¤äÈó¾×ÆÍ¤ÏÀè¹Ը¦µæ¤ò¾å²ó¤ë¹⤤ǽ¤򼨤¹°ìÊý¤ǡ¤¥å״֤Υæ¥ˡ¼¥¯¤Ϥ鷺¤«¤ËÄ㲼¤·¡¤Àèü¥ץ¥¹¤ˤª¤±¤ëPUF¤ι½¤¤ä¼ÂÁõ¤βþ¤ÎɬÍפ򼨺¶¤¹¤ë·ë²̤Ȥʤä¿¡¥

7F-2 (»þ´Ö: 8:55 - 9:20)
Âê̾ ÅÅÎϲòÀϹ¶·â¤ËÂФ¹¤ë¥֥é¥å¯¥ܥ寥¹ɾ²êˡ¤θ¡Ƥ
Ãø¼Ô *´ßËÜ ¹Ìʿ, ²Ï¼ ÂçÊå, ´䲼 ÌÇ, ¿åÌî Ƿ (Å쳤Íý²½ µ»½ѳ«ȯ¥»¥󥿡¼), ¸Ÿ¶ ÏÂˮ (»º¶ȵ»½ÑÁí¹縦µæ½ê ¥»¥­¥奢¥·¥¹¥ƥฦµæÉôÌç)
Page pp. 1934 - 1946
Keyword ¥µ¥¤¥ɥã¥ͥë, CPA, AES, ¼ÂÁõ°Â, °Źæ¥⥸¥塼¥ë
Abstract CPA(Correlation Power Analysis)¤ò¤Ϥ¸¤á¤Ȥ¹¤ëÅÅÎϲòÀϹ¶·⤬Áȹþ¤ߵ¡´ï¤ˤȤäƶ¼°ҤȤʤäƤª¤ꡤ¤½¤ÎÂѤò³ΤËÇİ®¤¹¤ëɬÍפ¬¤¸¤Ƥ­¤Ƥ¤¤롥¶¯ÎϤÊÅÅÎϲòÀϹ¶·â¤ϰŹæ²óϩ¤䥢¥르¥ꥺ¥à¤μÂÁõ¾ðÊó¤òÍøÍѤ¢¤뤤¤Ͽ䬤·¤ƹ½¤µ¤ì¤뤬¡¤Ĵã¼Ô¦¤ǤϤ½¤ì¤é¤ξðÊó¤òÆþ¼ê¤Ǥ­¤ʤ¤¾ì¹ç¤â¿¤¯¡¤¤ޤ¿¡¤¹¶·â¼ԤȰۤʤꤽ¤ì¤é¤òÉÔ¤ËÆþ¼ꤹ¤뤳¤Ȥâ¤Ǥ­¤ʤ¤¡¥¤½¤³¤ÇËܹƤǤϡ¤¥֥é¥å¯¥ܥ寥¹ɾ²ˤª¤±¤ëɾ²ÁÈϰϤȡ¤¤½¤ζñÂÎŪ¤Êɾ²êˡ¤ò¸¡Ƥ¤·¡¤¤ޤ¿¡¤Èë̩¸°¾ðÊó¤òɾ²ËÍѤ¤¤뤳¤Ȥˤè¤êÂÅÅö¤ʷ׻»Î̤ÇÀȼå¤Î¸ºߤò³Îǧ¤Ǥ­¤뤳¤Ȥ򼨤¹¡¥

7F-3 (»þ´Ö: 9:20 - 9:45)
Âê̾ PUF Evaluation against Linear Programming Model on SASEBO-GII
Ãø¼Ô *Hyunho Kang, Yohei Hori, Toshihiro Katashita (»º¶ȵ»½ÑÁí¹縦µæ½ê ¥»¥­¥奢¥·¥¹¥ƥฦµæÉôÌç), Akashi Satoh (»º¶ȵ»½ÑÁí¹縦µæ½ê ¥ʥΥ¨¥쥯¥ȥí¥˥¯¥¹¸¦µæÉôÌç)
Page pp. 1947 - 1950
Keyword Physical Unclonable Function (PUF), Modeling attack, Linear Programming, Logistic regression, SASEBO-GII
Abstract Physical unclonable functions (PUFs) have outstanding unique and non-reproducible properties due to the inter-chip variations. However, their low tolerance, particularly of a linear delay based PUFs, against the machine learning or linear programming detracts from the innovativeness. In this paper we focus on an efficient PUF evaluation method by using linear programming and logistic regression in the case of the CRPs with low entropy.

7F-4 (»þ´Ö: 9:45 - 10:10)
Âê̾ OpenXML¥ե¡¥¤¥ë¤ؤÎÄɵ­²Äǽ½ð̾Êý¼°¤ÎÄó°Æ
Ãø¼Ô *µ´Ƭ Âç²ð, ±©º¬ ¿µ¸ã (¡ʳô¡ËÆüΩºî½ê ²£É͸¦µæ½ê), °Ëƣ ½ç»Ò (¡ʳô¡ËÆüΩºî½ê ¼Ҳ񥤥Υ١¼¥·¥ç¥󡦥ץ¥§¥¯¥ÈËÜÉô ¥½¥ê¥塼¥·¥ç¥ó¿ä¿ÊËÜÉô)
Page pp. 1951 - 1957
Keyword ÅŻҽð̾, OpenXML
Abstract Ëܸ¦µæ¤Ǥϡ¤OpenXML¥ե©¡¼¥ޥåȤΥե¡¥¤¥ë¡ÊOpenXML¥ե¡¥¤¥ë¡ˤòÂоݤȤ·¤ơ¤ʸ½ñ¤ˤʤµ¤줿½ð̾¤ò̵¸ú²½¤»¤º¤ˡ¤ʸ½ñ¤ËÄɵ­¤ª¤è¤ӽð̾¤ò¹Ԥ¨¤ëÄɵ­²Äǽ½ð̾Êý¼°¤òÄó°Ƥ¹¤롥OpenXML¥ե©¡¼¥ޥåȤϡ¤Microsoft® Office 2007¤ʤÉÍ͡¹¤ʥ¢¥ץꥱ¡¼¥·¥ç¥ó¤ÇÍøÍѤµ¤ì¤Ƥ¤¤롥Äó°ÆÊý¼°¤Ǥϡ¤ºǽé¤νð̾ºî»þ¤˥֥é¥󥯤Υե¡¥¤¥ë¤òºî¤·¡¤¤½¤ì¤ò½ð̾ÂоݤÎOpenXML¥ե¡¥¤¥ë¤ËËä¹þ¤ó¤ÇÍøÍѤ¹¤뤳¤Ȥǡ¤°ʹߤÎÄɵ­¤ª¤è¤ӽð̾¤ò²Äǽ¤ˤ¹¤롥¤ޤ¿¡¤Äó°ÆÊý¼°¤ˤè¤ëÄɵ­¤ä½ð̾¤νèÍý¤ò¼ÂÁ¤Äɵ­¤ª¤è¤ӽð̾¤µ¤줿ʸ½񤬡¤Microsoft® Office 2007¤Ç¤·¤¯ǧ¼±¤Ǥ­¤뤫¤θ¡¾ڤò¹Ԥ¦¡¥ºǸå¤ˡ¤¾嵭Äó°ÆÊý¼°¤ò¥١¼¥¹¤Ȥ¹¤륵¡¼¥з¿¤ÎÄɵ­²Äǽ½ð̾Êý¼°¤ˤĤ¤¤Ƽ¨¤¹¡¥Äɵ­¤ä½ð̾¤νèÍý¤ϡ¤Ãæ±û¤νð̾¥µ¡¼¥Ф¬½¸Ì󤷤ƹԤ¦¤³¤Ȥǡ¤ʣ¿ô¿ͤ¬OpenXML¥ե¡¥¤¥ë¤ØÄɵ­¤ä½ð̾¤ò¹Ԥ¦¤ΤòÍưפˤ¹¤롥

7F-5 (»þ´Ö: 10:10 - 10:35)
Âê̾ ĶÂʱ߶ÊÀþ¾å¤Υڥ¢¥ê¥󥰰Źæ¤ÎGPU¼ÂÁõ¤˴ؤ¹¤ë°ì¹ͻ¡
Ãø¼Ô *Àаæ ¾­Âç, ÃöËó ÆØÉ×, ƣÀî ÏÂÍø (ÆàÎÉÀèü²ʳص»½ÑÂç³ر¡Âç³Ø)
Page pp. 1958 - 1966
Keyword Âʱ߶ÊÀþ°Źæ, ¥ڥ¢¥ê¥ó¥°, GPGPU
Abstract ËܹƤǤÏĶÂʱ߶ÊÀþ¾å¤Υڥ¢¥ê¥󥰤ˤĤ¤¤ÆGPU¤òÍѤ¤¤¿¥ڥ¢¥ê¥󥰥¢¥르¥ꥺ¥à¤ÎÊÂÎ󲽤ιͻ¡¤ȼÂÁõ¼¸³¤ò¹Ԥä¿¡¥¥ڥ¢¥ê¥󥰰Źæ¤ÏID¥١¼¥¹°Źæ¤䡤¥֥¥ɥ­¥㥹¥ȰŹæ¤αþÍѤò»ý¤¤Âʱ߶ÊÀþ¾å¤Υڥ¢¥ê¥󥰤ϸúΨŪ¤ʼÂÁõ¤â¹Ԥï¤ì³èȯ¤˸¦µ椵¤ì¤Ƥ­¤¿¡¥°ìÈÌŪ¤˥ڥ¢¥ê¥󥰤˷¸¤ë±黻¤ϡ¤¶ÊÀþ¾å¤α黻¤ËÈæ¤Ùʣ»¨¤ǡ¤Âå¿ô¶ÊÀþ¤Ȥ·¤Ƽï¿ô¤ι⤤¤â¤Τò¤ÖÄø·׻»¥³¥¹¥ȤϹ⤯¤ʤ롥ËáǯGPU¤òÈÆÍѱ黻¤ËÍѤ¤¤ëGPGPUµ»½Ѥ¬ȯ㤷¡¤°Ź桤°Źæ²òÆɤÎʬÌî¤ǤâGPU¤òÍѤ¤¤¿¸¦µ椬¤ó¤Ǥ¢¤롥ËܹƤǤϡ¤ÊÂÎó½èÍý¤ˤè¤ê¥ڥ¢¥ê¥󥰤ι⮲½¤¬¤ɤÎÄøÅÙÆé¤ì¤ë¤Τ«¡¤¤½¤ÎÊÂÎ󲽤Υ¢¥ץ¥ιͻ¡¤ȡ¤¼¸³¤Ȥ·¤ÆGPU¤òÍѤ¤¤¿¼ÂÁõ¤ò¹Ԥ¤·ë²̤ò½Ҥ٤롥